256 research outputs found

    Gravitational Binding, Virialization and the Peculiar Velocity Distribution of the Galaxies

    Full text link
    We examine the peculiar velocity distribution function of galaxies in cosmological many-body gravitational clustering. Our statistical mechanical approach derives a previous basic assumption and generalizes earlier results to galaxies with haloes. Comparison with the observed peculiar velocity distributions indicates that individual massive galaxies are usually surrounded by their own haloes, rather than being embedded in common haloes. We then derive the density of energy states, giving the probability that a randomly chosen configuration of N galaxies in space is bound and virialized. Gravitational clustering is very efficient. The results agree well with the observed probabilities for finding nearby groups containing N galaxies. A consequence is that our local relatively low mass group is quite typical, and the observed small departures from the local Hubble flow beyond our group are highly probable.Comment: Paper in aastex 5.0 format and 9 figures. Replace a new version with figures and typos correcte

    A machine learning strategy to identify candidate binding sites in human protein-coding sequence

    Get PDF
    BACKGROUND: The splicing of RNA transcripts is thought to be partly promoted and regulated by sequences embedded within exons. Known sequences include binding sites for SR proteins, which are thought to mediate interactions between splicing factors bound to the 5' and 3' splice sites. It would be useful to identify further candidate sequences, however identifying them computationally is hard since exon sequences are also constrained by their functional role in coding for proteins. RESULTS: This strategy identified a collection of motifs including several previously reported splice enhancer elements. Although only trained on coding exons, the model discriminates both coding and non-coding exons from intragenic sequence. CONCLUSION: We have trained a computational model able to detect signals in coding exons which seem to be orthogonal to the sequences' primary function of coding for proteins. We believe that many of the motifs detected here represent binding sites for both previously unrecognized proteins which influence RNA splicing as well as other regulatory elements

    A power-law distribution for tenure lengths of sports managers

    Get PDF
    We show that the tenure lengths for managers of sport teams follow a power law distribution with an exponent between 2 and 3. We develop a simple theoretical model which replicates this result. The model demonstrates that the empirical phenomenon can be understood as the macroscopic outcome of pairwise interactions among managers in a league, threshold effects in managerial performance evaluation, competitive market forces, and luck at the microscopic level

    The CRISPR/Cas9 System for Crop Improvement: Progress and Prospects

    Get PDF
    The global demand for high-quality crops is continuously growing with time. Crop improvement techniques have a long history and they had been applied since the beginning of domestication of the first agricultural plants. Since then, various new techniques have and are being developed to further increase the commercial value and yield of crops. The latest crop improvement technique known as genome editing is a technique that enables precise modification of the plant genome via knocking out undesirable genes or enabling genes to gain new function. The variants generated from the genome editing are indistinguishable from naturally occurring variation. It is also less time-consuming and more readily accepted in the market commercially. The usage of genome editing has proven to be advantages and plays a promising role in future crop improvement efforts. Therefore, in this chapter, we aim to highlight the progress and application of genome editing techniques, in particular, the CRISPR/Cas9 system as a powerful genome editing tool for crop improvement. In addition, the challenges and future prospects of this technology for crop improvement will also be discussed

    Braneworld Tensor Anisotropies in the CMB

    Get PDF
    Cosmic microwave background (CMB) observations provide in principle a high-precision test of models which are motivated by M theory. We set out the framework of a program to compute the tensor anisotropies in the CMB that are generated in braneworld models. In the simplest approximation, we show the braneworld imprint as a correction to the power spectra for standard temperature and polarization anisotropies.Comment: Minor corrections and references added. Accepted for publication in Phys. Rev.

    (1+3) Covariant Dynamics of Scalar Perturbations in Braneworlds

    Full text link
    We discuss the dynamics of linear, scalar perturbations in an almost Friedmann-Robertson-Walker braneworld cosmology of Randall-Sundrum type II using the 1+3 covariant approach. We derive a complete set of frame-independent equations for the total matter variables, and a partial set of equations for the non-local variables which arise from the projection of the Weyl tensor in the bulk. The latter equations are incomplete since there is no propagation equation for the non-local anisotropic stress. We supplement the equations for the total matter variables with equations for the independent constituents in a cold dark matter cosmology, and provide solutions in the high and low-energy radiation-dominated phase under the assumption that the non-local anisotropic stress vanishes. These solutions reveal the existence of new modes arising from the two additional non-local degrees of freedom. Our solutions should prove useful in setting up initial conditions for numerical codes aimed at exploring the effect of braneworld corrections on the cosmic microwave background (CMB) power spectrum. As a first step in this direction, we derive the covariant form of the line of sight solution for the CMB temperature anisotropies in braneworld cosmologies, and discuss possible mechanisms by which braneworld effects may remain in the low-energy universe.Comment: 22 pages replaced with additional references and minor corrections in Revtex4, and accepted for publication in Phys. Rev.

    The impact of acoustic neuroma on long-term quality-of-life outcomes in the United Kingdom

    Get PDF
    To quantify the impact of acoustic neuroma on the quality-of-life (QOL) patients in the United Kingdom. Online questionnaire survey. Members of the British Acoustic Neuroma Association received PANQOL questionnaires. Of the 880 BANA members contacted, 397 (45.1%) responded, although only 359 had complete datasets for analysis. Composite QOL scores were as follows: for microsurgery 58 (SD 35), for radiotherapy 56 (SD18), for combination of surgery and radiotherapy 49 (SD 14), and for the observation group 54 (SD 20). No statistical significance with ANOVA (p = 0.532). Mean (SD) composite QOL scores were as follows: for follow-up 10 years 65 (SD 45). Overall, these values were significantly different compared by ANOVA (p 10 years) QOL outcomes show no significant differences between the different treatment groups

    Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase.

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are recently discovered enzymes that oxidatively deconstruct polysaccharides. LPMOs are fundamental in the effective utilization of these substrates by bacteria and fungi; moreover, the enzymes have significant industrial importance. We report here the activity, spectroscopy and three-dimensional structure of a starch-active LPMO, a representative of the new CAZy AA13 family. We demonstrate that these enzymes generate aldonic acid-terminated malto-oligosaccharides from retrograded starch and boost significantly the conversion of this recalcitrant substrate to maltose by β-amylase. The detailed structure of the enzyme's active site yields insights into the mechanism of action of this important class of enzymes.This work was supported by a grant from the European Research Agency—Industrial Biotechnology Initiative as financed by the national research councils: Biotechnology and Biological Sciences Research Council (grant number BB/L000423) and Agence Française de l'Environnement et de la Maîtrise de l'Energie (grant number 1201C102). The Danish Council for Strategic Research (grant numbers 12-134923 and 12-134922). The Danish Ministry of Higher Education and Science through the Instrument Center DANSCATT and the European Community’s Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement N°283570) funded travel to synchrotrons. P.H.W. acknowledges the experimental assistance of Rebecca Gregory and Dr Victor Chechik. L.L.L. acknowledges the experimental assistance of Dorthe Boelskifte and the ESRF and MAXLAB staff for assistance with data collection.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/ncomms696
    corecore